Delivery of SP-101 restores CFTR function in human CF airway epithelial cultures and drives hCFTRΔR transgene expression in the airways of ferrets

SP-101 – A novel, inhaled gene therapy to treat CF

Design Features
- AAV capsid selected for tropism to the apical surface of human airway epithelia (HAE)
- hCFTRΔR minigene with regulatory elements

Mechanism of Action
- Efficient apical entry
- Enhanced SP-101 translocation to the nucleus by co-administration with doxorubicin (Dox)
- Increased CFTR expression

SP-101 is tropic to and corrects human CF airway epithelia

Ferrets as a model to evaluate inhaled SP-101

- CF ferret model recapitulates human CF lung pathology
- Ability to administer via inhalation

Methods
Ferrets were exposed to SP-101 or diluent followed by doxorubicin or diluent on a platform system connected to a mesh respirator. Animals were sacrificed 2 or 12 weeks post-exposure and tissues harvested for in situ hybridization (ISH) or copies of hCFTRΔR mRNA. ISH: Sections from formalin-fixed paraffin-embedded lung were evaluated by RNAscope hybridization (ISH) or copies of hCFTRΔR mRNA. ISH: Sections from formalin-fixed paraffin-embedded lung were evaluated by RNAscope (data not shown). Data are shown as box and whisker plots around the median value.

Non-CF ferrets

- No signal was observed in the absence of reverse transcriptase indicating the complete removal of vector genomes (data not shown).

CF and non-CF ferrets

- Doxorubicin increases hCFTRΔR mRNA expression >10 fold and is durable in ferret lungs.

ACKNOWLEDGEMENTS
Lovelace Biomedical; Philip Kuehl, Adam Werts, Bryan Gullick; Cystic Fibrosis Foundation; Martin Mense, Yi Cheng, Kevin Coote, Hermann Bihler; Spirovant; Scott Randal, Samuel Gallant, Tony Church; University of Iowa; John Englehardt, Ying Lu, Tang, Ziyung Yan; Spirovant: Joan Lau, Eric Yuen, Roland Kolbec, Mark Smith, Donna Henry, Matthew Glazefelter, Shen Lin, Madhu Mahankali, Poornima Kotha; Statistical Support: Wei Zhu

REFERENCES